
A YEAR OF INNOVATION IN ITS

This paper is split into two parts:
1. The Use of Internet-Of-Things (IOT), Open Source Hardware, Software and Transmission Media for

Traffic Signal Monitoring
2. Project Eboracum – Chlorus – Vehicle to Infrastructure communications utilising ODBII, Bluetooth,

Android and Roadside Beacons

The Use of Internet-Of-Things (IOT), Open Source Hardware, Software and Transmission Media for Traffic
Signal Monitoring

Authors:

• Robert Whiteside, Independent

1 Aims

● To develop an open source system to monitor traffic signal controller status over LoRaWAN

using IOT open source technologies and interface into third party system, such as Imtrac.

● Help expand the LoraWAN network by providing gateways and coverage in the region.

The outcome is not to produce a commercially viable product but to explore what is achievable with

Open Source, IOT technologies.

2 Introduction

I recently became a member of The Sheffield Hardware Hackers and Makers, a group of hobbyist,

students and professionals who through membership subscriptions, fund the running of a workshop

at the Portland Works, Sheffield. The Sheffield Hardware Hackers and Makers teamed up with The

Sheffield Things Network to host several Smart Cities events with the objective to expand LoRaWAN

coverage within the Sheffield City Region (SCR).

LoRaWAN coverage of a region is dependant on the number of gateways present, these gateways

are installed and owned by individuals or groups; the more gateways the better the coverage. SCR

has a lack of LoRaWAN Gateways available for public use; the hope would be to place gateways at

traffic signal sites, with ADSL backhaul, which could be used to expand coverage of LoRaWAN in the

region while also providing a link to other signal sites without communication and monitor them

over LoRaWAN. The group introduced me to the LoRaWAN and IOT technologies available and soon

I could see areas where this technology could be implemented in a highways asset management

environment.

3 Technologies

LoRaWAN is an open source, Long Range, Low Power, Low bandwidth network using

communications media operating in the EU on 868MHz. Bandwidth is limited to 51 bytes per

message and 30 seconds per day, but a radius of upto 10 miles is possible. Two way communication

is possible but any download data is sent after data is uploaded to the network server. LoRaWAN’s

current uses include measuring air quality, monitoring wildlife, flood detection sensors, traffic

movement and energy consumption.

The Things Network (TTN) is a global, crowdsourced, open, free and decentralized IOT network

which provides infrastructure based on LoRaWAN to connect IOT devices. Devices connect in a star

topology to LoRaWAN gateways which serve to forward packets to and from the TTN server. Each

device is registered to the network and also to an application using unique 64 bit keys as shown in

Fig. 1 below the network diagram; the payload message is also encrypted for security. The

application on the TTN handles the communication and messages between devices and server.

MQTT is a machine-to-machine (M2M) IOT connectivity protocol with an extremely lightweight

publish/subscribe messaging transport, for connections with remote locations where a small code

footprint is required and/or network bandwidth is at a premium.

Node-Red is an open source visual editor for wiring IOT devices in software by linking together node

modules to perform functions on message payloads. It allows for rapid development with minimal

coding to relay message payloads from TTN using MQTT, to other application servers such as

Imtrac’s Remote Monitoring System (RMS) . Node Red also provides us with a means to test

applications or route data to other MQTT brokers or subscribers.

4 Hardware

The devices are based on an Arduino Uno with LoRaWAN transceiver shield which interfaces with

the traffic signal controller UTC reply bit interface to monitor controller, detector and lamp fault

reply bits.

The Gateways are based on a Raspberry Pi 3 (RPi3) Single Board Computer (SBC) with a multi-

channel LoRaWAN hat running a Debian operating system; an additional Pi 3 would also be used as

the Node Red Server.

Figure 1 Shows how the technologies and hardware are networked together.

 Figure 1 LoRaWAN network architecture and security

Project Eboracum: Chlorus – Vehicle to Infrastructure communications utilising ODBII, Bluetooth, Android
and Roadside Beacons

Author:

• Peter Routledge, Ian Routledge Consultancy

1 Introduction

The Eboracum project funded by DfT under the C-ITS programme, aims to understand if and how
probe vehicle data from both beacon and cellular approaches can improve a typical UK commuter
corridor for all road users, including park and ride buses.

This paper describes a method of utilising existing technologies in an effort to provide low cost
probe vehicles that in theory could be retrofitted into existing fleets.

2 Chlorus
 In the spirit of York’s Roman history and to tie in with the name of the project the Android
 application that was developed to facilitate communications between vehicles and roadside
 infrastructure has been named Chlorus after Constantius Chlorus who died in York on 25 July 306.

The study area incorporated the A59 corridor into York from the VMS located approximately 1.2KM
to the West of the outer ring road to the traffic signal crossing located at Holgate Road / Chancery
Rise a total distance of approximately 4.5KM. There were also 2 nodes in the city centre located in
the vicinity of York Railway Station.

Equipment utilised to ‘equip’ vehicles
All equipment used is off the shelf and included:
a. Samsung Galaxy TAB A 7.0;
b. Modified Samsung Galaxy TAB A 7.0 – with wifi antennae modified to permit an SMA connector

to facilitate an external aerial; and

c. OBDII (On Board Diagnostics 2) Bluetooth dongle.

 App Development - Chlorus

From the outset it was opted to utilise Android devices to facilitate communications from the
vehicle to the roadside beacon as:
a. The Android environment provided:

• The lowest barrier to access with respect to development;

• Greater access to elements of the Android kernel with regard to managing WiFi parameters
from within an app;

• Existing libraries for ODBII integration such as OBD-II Java API; and
b. Device acquisition costs were lower.

The app was developed in version 3 of Android Studio targeting versions Jelly Bean (4.1) through to
Oreo (8.0). The intention was to rely on minimal third party modules however for ease the app was
compiled with:
a. Google Play Services 15;
b. OKHTTP 3.8.1; and
c. Unirest 1.4.9.

A key requirement was that the app would not be interacted with whilst driving, thus although an
output screen was provided whilst the app was running all data was also logged for review in the
office.

The app itself was split into two parts:
a. Communications module to facilitate connecting to the IDT roadside beacons and transmitting

data from the vehicle and the app to the AWS database; and
b. Vehicle interrogation module to manage the transmission over Bluetooth of requests and

associated responses from the vehicle’s ODBII port.

The app itself provided:
a. An overview screen that provides a visual output of the events the app is managing (Figure 1):

• Startup OBDII data once the Bluetooth connection was established with the dongle and the
vehicles ignition is started;

• Access points in the vicinity (only those associated with the project (iEac)); and

• The current location; and
b. Configurable settings that allow:

• Core application parameters to be specified including end point, vehicle ID, etc (Figure 2);
and

• ODBII commands to be specified (Figure 3).

Figure 1

Parameters
from OBDII

Heading from
Android device

Core component
statuses

Figure 2

Roadside Beacons
The roadside beacons were IDT Mesh units (also used for journey time collection) that were
installed at traffic signals, CCTV and lighting columns as required and then connected onto the CYC
fibre network which then in turn routed out to the internet (to a limited subset of IP addresses).

All data from the app was transmitted as HTTP requests to the Amazon Web Services (AWS)
infrastructure that has been used as the backbone of the project, primarily:
a. A micro EC2 instance running Ubuntu to process the received data; and
b. An RDS instance running PostgreSQL.

Data
Table 1 and Figure 4 show a single trip taken from West of the outer most node to the traffic signal
controlled junction of the A59 / Beckfield Lane (YK-2262) a distance of 2km. The trip was
undertaken on 13/07/2018 from 08:42 to 08:46 utilising a 2015 2.0L diesel Mercedes CLA.

 Table 1 shows data transmitted at a given point (visualised in Figure 4) including:

a. Timestamp;
b. Connected node (and associated signal strength);
c. Location; and
d. Parameters retrieved over OBDII.

It is possible to extrapolate queueing from the data as can be seen from rows 617 to 632 in which
the speed slows to a stop, dwells and then accelerates once the queue begins to discharge at
green.

Note: Blank rows are present in the data due to the resolution that commands were being passed
over the OBDII interface and the associated queueing of both the requests and responses.

Figure 3

Table 1

Figure 4

3 Lessons learned

The project has provided a unique opportunity to explore utilising existing technologies in an effort
to provide low cost probe vehicles that in theory could be retrofitted into existing fleets. Some of
the key lessons learned were as follows:
a. It is possible to utilise existing low cost technologies to collect data from probe vehicles;
b. Utilising off the shelf devices for connection to wireless nodes is not without challenges,

particularly the relatively low gain antennae used in off the shelf hardware;
c. When travelling at speed the speed of vehicle combined with the time required for the Android

device to connect and negotiate a connection can limit the number of successful connections
d. By default WiFi devices want to ‘hang on’ to an existing node as long as possible, additional

configuration based on signal strength as well as other parameters needs to be employed to
ensure optimum connections from a moving vehicle; and

e. Certain OBDII codes such as fuel type can be queried less frequently as they will not change.

In addition, whilst developing the application it was noted that Android ecosystem evolution may
potentially limit feasibility for future deployment as it appears to be Google’s intent to limit the
level of access applications have to underlying functions such as WiFi.

4 What Next

 Going forward It is hoped that there will be the opportunity to:

a. Explore the potential of greater COYC fleet penetration;
b. Expand the OBDII codes collected to include PIDs such as 8F Particulate Sensor Banks 1 & 2 etc;
c. Investigate the deployment of more beacons as part of York STEP project; and
d. Assess the potential of utilising the BSSID (its unique reference) of mesh node to pass data as a

parameter to facilitate passing dedicated messages to road side intelligence unit (in
conjunction with additional OBDII codes).

5 Acknowledgements

 The author wishes to thank the following for their support:

• COYC Signals Team

• DfT (Graham Hanson and Darren Capes)

• IDT Ltd (Richard Gibson and Robin Jefferson)

• White Willow Consulting (Andy Graham, Jon Wade and Charles Hewson)

The views expressed in this paper are that of the Author and do not necessarily represent other

parties within the Eboracum project.

